TNG032 
Applied transform theory, 6 ECTS credits.
/TillĂ¤mpad transformteori/
For:
ED
KTS
MT


Prel. scheduled
hours: 48
Rec. selfstudy hours: 112


Area of Education: Science
Subject area: Mathematics


Advancement level
(G1, G2, A): G2


Aim:
To gove the students the mathematical background in transformthoery needed in Circuit Theory, Control theory, Image Processing and Signals and Systems. Students will be expected to be able to do the following after completing this course:
 utilize and determine Fourierseries, use Parsevals identity, use basic convergence results
 transform functions and sequences using Fourier, Laplace and Ztransform, have knowldge about what function and sequences that can be transformed, and the properties of the transformed function and sequences.
 use transforms and Fourier series to solve e.g. ordinary differential equations, partial differential equations, difference equations, integral equations.
 carry out convergence tests for improper integrals, series and power series.


Prerequisites: (valid for students admitted to programmes within which the course is offered)
Single variable calculus, Linear Algebra, Multi variable calculus
Note: Admission requirements for nonprogramme students usually also include admission requirements for the programme and threshhold requirements for progression within the programme, or corresponding.


Organisation:
Teaching is done in lectures and problem classes, and lab exercises.


Course contents:
We will study some important transform methods: Fourier series, Fourier transforms, Laplacetransforms, and ztransforms, together with some of their applications. Series


Course literature:
Fourier and Laplace transforms, Berends m.fl., Cambridge University Press.


Examination: 

Written examination Laborations Optional written test 
4,5 ECTS 1,5 ECTS 0 ECTS




Course language is Swedish.
Department offering the course: ITN.
Director of Studies: Clas Rydergren
Examiner: Olof Svensson
Link to the course homepage at the department

